

Understanding the demands and differences between G3 Pure and Combined Sciences

SCIENCE

is all around us

Goals of Science Education

- Enthuse and nurture all students to be scientifically literate
- Provide strong fundamentals for students to pursue science related areas (STEM) in learning and work
- Prepare individuals to navigate an increasingly complex and technologically advanced world, while also fostering a deeper appreciation for the wonders of the natural world.

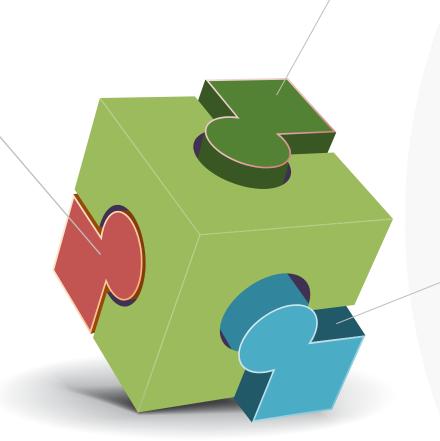
	Science
CRITERIA, DESIRED DISPOSITIONS	 A Science student should have: a strong foundation in Science, and possess the spirit of scientific inquiry the confidence to engage confidently in issues and questions that relate to the roles played by Science in daily life, society and the environment the ability to discern, weigh alternatives and evaluate claims and ideas critically, based on logical scientific evidence and arguments
SKILLS & COMPETENCIES TO BE DEVELOPED	Science education plays a vital role in developing the 21st-century skills needed to thrive in an increasingly complex, interconnected, and rapidly changing world. Students will learn to: • analyze and evaluate complex problems through critical thinking . • problem solve issues through experimentation and research. • communicate their findings and ideas effectively through reports and presentations. • collaborate and work in teams. • exercise adaptability and flexibility during challenges. • exercise ethical awareness in responsible conduct of research, ethical considerations in scientific inquiry, and the importance of ethical behavior in the scientific community. • cultivate a sense of curiosity and a passion for discovery.
POST-SECONDARY OPPORTUNITIES	Science education provides students with a diverse set of skills and competencies that are valuable not only in scientific careers but also in many other fields, including education, healthcare, technology, and environmental conservation.

The Science Syllabus

less emphasis on factual materials...

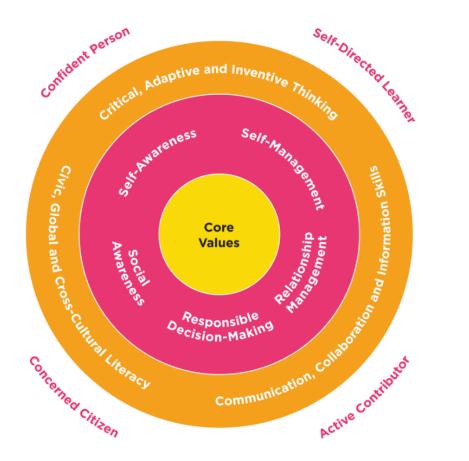
...much greater emphasis on the understanding and application of scientific concepts and principles

builds on the foundations of Lower Secondary science


the need to develop skills that will be of long-term value

Differences between the Sciences

The study of the composition, structure, properties and change of matter... known as the 'central science' that bridges physics and biology


The study of life and living organisms... including their physical structure, function, growth and evolution

The study of matter & its motion through space & time... the concepts of energy & forces... how the universe behaves...

Skills, 21st Century Competencies and Student Outcomes

2025 SEC 2 MTP & SUBJECT OPTIONS TALK

Skills, Values & Attitudes in Science

Data driven practice
Communicate and
Convince

Observing, Predicting,
Comparing, Classifying,
Inferring, Analysing
Evaluating, Verifying

Develop sound arguments
Hypothesise
Reason

Topics covered in Lower Secondary Science

Chemistry

- 2. Physical Properties
- 3. Chemical Composition
- 4. Separation Techniques
- Particulate Nature of Matter
- 8. Atoms and Molecules
- 11. Chemical changes

Biology

- 6. Cells
- 12. Ecosystems
- 14. Human Digestive System
- 15. Transport Systems in Living Things
- 16. Human Sexual Reproduction System

Physics

- 5. Ray Model of Light
- 9. Forces, Pressure, Moments, Energy
- 10. Transfer of Heat Energy and its Effects
- 13. Electrical Systems

G3 Science combinations offered

Combined Sciences(Chem, Bio)

Combined Sciences (Phy, Chem) Double Pure Chemistry and Biology

Double Pure Chemistry and Physics

Is taking Triple Pure Sciences necessary?

- Entry requirements to Junior colleges revised to L1R4 (5 subjects)
- Students are encouraged to focus on holistic development
- Junior colleges do not offer Triple Science
- Medicine and Dentistry admission requirements require two
 Sciences only Chemistry and either Biology OR Physics

G3 Pure Sciences – Scheme of Assessment

Paper	Pure Sciences	Duration	Marks	Weighting
1	Multiple Choice	1h	40	30%
2	Structured & Free Response	1h 45m	80	50%
3	Practical Assessment	1h 50m	40	20%

G3 Combined Science – Scheme of Assessment

Paper	Combined Sciences	Duration	Marks	Weighting
1	Multiple Choice	1h	40	30%
2	Structured & Free Response (Physics)	1h 15m	65	32.5%
3	Structured & Free Response (Chemistry)	1h 15m	65	32.5%
4	Structured & Free Response (Biology)	1h 15m	65	32.5%
5	Practical Test	1h 30m	30	15%

Pure vs Combined Science

Details	Pure Sciences	Combined Sciences
Subject component	Standalone subject	Two Science subjects combined into a single subject
Content coverage	100%	Approximately 65% of the corresponding Pure Science subject
Curriculum time per week	Each Pure Science subject 9 periods	Each Combined Science subject 6 periods
	Double Pure = 18 periods	Combined Sciences = 12 periods

Scheme of Assessment

Details	Pure Sciences (for 1 subject)	Combined Sciences (for 1 component)	Sec 2 Science
MCQ	30% (of subject) 40 marks 1 hr	10% 20 marks 30 mins	30% 30 marks
Structured Qns	50% 80 marks 1 hr 45 mins	32.5% 65 marks 1 hr 15 mins	70% 70 marks 2 hr
Practical	20% 40 marks 1 hr 50 mins	7.5% 15 marks 45 mins	N.A.

Pure vs Combined Science – Assessment Weightings

Assessment Objectives	Pure Sciences	Combined Sciences
Knowledge	15%	20%
Understanding	30%	30%
Handling Information & Solving Problems	55%	50%

Pure vs Combined Science

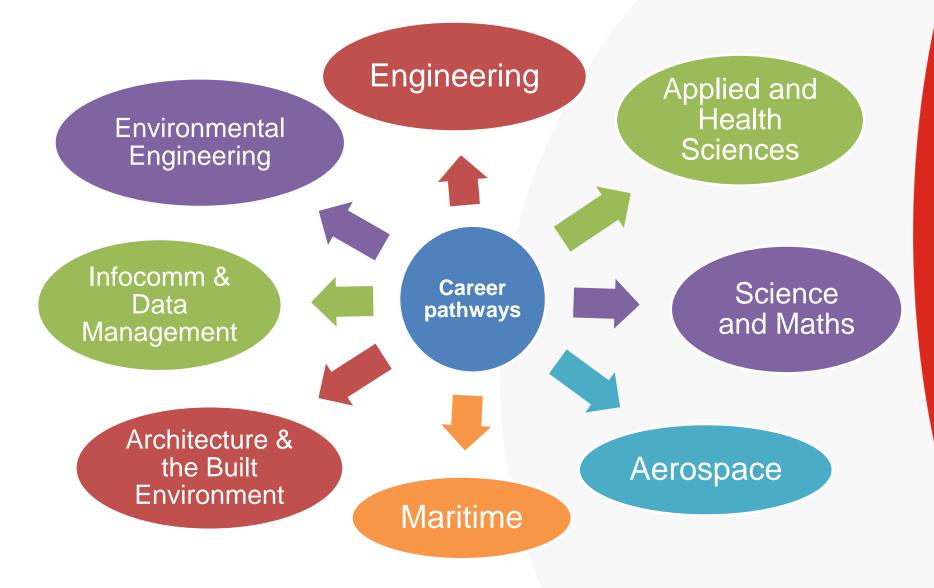
Details	Pure Sciences	Combined Sciences
No. of Assessments at O-Level	Double Pure: 6 papers	4 papers
Assessment questions posed	 Demanding - tend to be tricky and indirect. Students need to unpack the meaning of the questions. 	 Less demanding - tend to be more straightforward than for Pure Science.
	 1 Data-based question (10 – 12 marks) 	Simple data-infused question
	About 5 to 30% calculationsGreater % of explanations	About 10 to 40% calculationsLesser % of explanations

Pure vs Combined Science

Details	Pure Sciences	Combined Sciences
Requirement of answers	 More marks allocated to each part question 	Fewer marks allocated to each part question
	 Some calculation questions require 2 or 3 steps to solve 	 Most calculation questions require 1 or 2 steps to solve

Pure vs Combined Science Practicals

Details	Pure Sciences	Combined Sciences
No. of questions	• 2 to 3 questions per subject	1 question per subject
Measurements	 decide on the appropriate decimal places and units 	 informed on the appropriate decimal places and units
Table	 draw a table and decide on the measurements to take 	 provided in the paper
Graph	 interpret the set of data and its respective axis 	guided on both axes
Planning	 write out a plan for an experiment 	• none



G3 Science Assessment Weightage

Level	Subject Title	Subject Code	SEAB website links
G3	Physics	6091	https://www.seab.gov.sg/files/O%20Lvl%20Syllab us%20Sch%20Cddts/2026/6091_y26_sy.pdf
	Chemistry	6092	https://www.seab.gov.sg/files/O%20Lvl%20Syllab us%20Sch%20Cddts/2026/6092_y26_sy.pdf
	Biology	6093	https://www.seab.gov.sg/files/O%20Lvl%20Syllab us%20Sch%20Cddts/2026/6093_y26_sy.pdf
	Science (Phy, Chem)	5086	https://www.seab.gov.sg/files/O%20Lvl%20Syllab us%20Sch%20Cddts/2026/5086_y26_sy.pdf
	Science (Chem, Bio)	5088	https://www.seab.gov.sg/files/O%20Lvl%20Syllab us%20Sch%20Cddts/2026/5088_y26_sy.pdf

Relevance of Science for Post-Secondary Education

Course Requirements (University)

Course	School	Course Requirements
Dentistry	NUS	H2 pass in Chemistry and either Biology or Physics.
Medicine	NUS	H2 pass in Chemistry and either Biology or Physics.
Biomedical Engineering	NUS	H2 pass in Mathematics or Further Mathematics and either Physics or Chemistry
Biological Sciences	NTU	H1 pass in Mathematics and H2 pass in Physics / Chemistry / Biology
Medicine	NTU	H2 pass in Chemistry and Physics / Biology
Bioengineering	NTU	H2 pass in Mathematics and Physics / Chemistry / Biology / Computing

Course Requirements (Polytechnic)

Course	School	Course Requirements
Biomedical Science	Singapore Polytechnic	Any 1 Science ELR2B2 range: 4-7
Biomedical Science	Ngee Ann Polytechnic	Any 1 Science ELR2B2 range: 3-7
Chemical & Biomolecular Engineering	Ngee Ann Polytechnic	Any 1 Science ELR2B2 range: 4-12
Pharmaceutical Science	Nanyang Polytechnic	Any 1 Science ELR2B2 range: 7-10

Course Requirements (ITE)

Course	Course Requirements
 Electronics & Info-Comm Technology Applied & Health Sciences Design & Media Engineering 	Maths or Science

^{*}The ELR2B2 range changes by the year

Key Considerations

What are my child's strengths?

What are my child's aspirations?

Will my child be able to cope with the rigour?

communicate

Is my child eligible for the subject combination?

Making an Informed Decision

- Talk to seniors and/or FTs for clarifications
- Parents and students should discuss and come to an agreement if both parties have different aspirations
- Work towards aspirations and desired subject combinations in Semester 2 (setting up positive routines and developing good habits, the importance of help seeking behaviours, etc)